The LSD Broadcast Encryption Scheme
نویسندگان
چکیده
Broadcast Encryption schemes enable a center to broadcast encrypted programs so that only designated subsets of users can decrypt each program. The stateless variant of this problem provides each user with a fixed set of keys which is never updated. The best scheme published so far for this problem is the “subset difference” (SD) technique of Naor Naor and Lotspiech, in which each one of the n users is initially given O(log(n)) symmetric encryption keys. This allows the broadcaster to define at a later stage any subset of up to r users as “revoked”, and to make the program accessible only to their complement by sending O(r) short messages before the encrypted program, and asking each user to perform an O(log(n)) computation. In this paper we describe the “Layered Subset Difference” (LSD) technique, which achieves the same goal with O(log (n)) keys, O(r) messages, and O(log(n)) computation. This reduces the number of keys given to each user by almost a square root factor without affecting the other parameters. In addition, we show how to use the same LSD keys in order to address any subset defined by a nested combination of inclusion and exclusion conditions with a number of messages which is proportional to the complexity of the description rather than to the size of the subset. The LSD scheme is truly practical, and makes it possible to broadcast an unlimited number of programs to 256,000,000 possible customers by giving each new customer a smart card with one kilobyte of tamper-resistant memory. It is then possible to address any subset defined by t nested inclusion and exclusion conditions by sending less than 4t short messages, and the scheme remains secure even if all the other users form an adversarial coalition.
منابع مشابه
Design and formal verification of DZMBE+
In this paper, a new broadcast encryption scheme is presented based on threshold secret sharing and secure multiparty computation. This scheme is maintained to be dynamic in that a broadcaster can broadcast a message to any of the dynamic groups of users in the system and it is also fair in the sense that no cheater is able to gain an unfair advantage over other users. Another important feature...
متن کاملSequential Key Derivation Patterns for Broadcast Encryption and Key Predistribution Schemes
We study two closely related primitives: Broadcast Encryption and Key Predistribution Schemes (KPS). Broadcast Encryption allows a broadcaster to broadcast an encrypted message so that only a designated group of users can decrypt it. KPS allows a designated group of users to establish a common key non-interactively. We discover a generic method to construct efficient broadcast encryption scheme...
متن کاملPublic Key Broadcast Encryption for Stateless Receivers
A broadcast encryption scheme allows the sender to securely distribute data to a dynamically changing set of users over an insecure channel. One of the most challenging settings for this problem is that of stateless receivers, where each user is given a fixed set of keys which cannot be updated through the lifetime of the system. This setting was considered by Naor, Naor and Lotspiech [17], who...
متن کاملThe average transmission overhead for broadcast encryption
We consider broadcast encryption schemes wherein a center needs to broadcast a secret message to a privileged set of receivers. We prescribe a probability distribution P on the privileged set. In this setting, the transmission overhead can be viewed as a random variable over P and we define its expected value as the average transmission overhead (or ato). Given P, the Shannon’s entropy function...
متن کاملPublic-Key Revocation and Tracing Schemes with Subset Difference Methods
Trace and revoke is broadcast encryption with the traitor tracing functionality. It is a very powerful primitive since it can revoke users whose private keys are compromised by finding them using a tracing algorithm if a pirate decoder is given. Public-key trace and revoke (PKTR) is a special type of trace and revoke such that anyone can run the tracing algorithm and anyone can create an encryp...
متن کامل